Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Life (Basel) ; 12(9)2022 Sep 09.
Article in English | MEDLINE | ID: covidwho-2033046

ABSTRACT

As an extension of our research against COVID-19, a multiphase in silico approach was applied in the selection of the three most common inhibitors (Glycyrrhizoflavone (76), Arctigenin (94), and Thiangazole (298)) against papain-like protease, PLpro (PDB ID: 4OW0), among 310 metabolites of natural origin. All compounds of the exam set were reported as antivirals. The structural similarity between the examined compound set and S88, the co-crystallized ligand of PLpro, was examined through structural similarity and fingerprint studies. The two experiments pointed to Brevicollin (28), Cryptopleurine (41), Columbamine (46), Palmatine (47), Glycyrrhizoflavone (76), Licochalcone A (87), Arctigenin (94), Termilignan (98), Anolignan B (99), 4,5-dihydroxy-6″-deoxybromotopsentin (192), Dercitin (193), Tryptanthrin (200), 6-Cyano-5-methoxy-12-methylindolo [2, 3A] carbazole (211), Thiangazole (298), and Phenoxan (300). The binding ability against PLpro was screened through molecular docking, disclosing the favorable binding modes of six metabolites. ADMET studies expected molecules 28, 76, 94, 200, and 298 as the most favorable metabolites. Then, molecules 76, 94, and 298 were chosen through in silico toxicity studies. Finally, DFT studies were carried out on glycyrrhizoflavone (76) and indicated a high level of similarity in the molecular orbital analysis. The obtained data can be used in further in vitro and in vivo studies to examine and confirm the inhibitory effect of the filtered metabolites against PLpro and SARS-CoV-2.

2.
Molecules ; 26(21)2021 Oct 30.
Article in English | MEDLINE | ID: covidwho-1488678

ABSTRACT

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Subject(s)
Coronavirus Papain-Like Proteases/metabolism , SARS-CoV-2/drug effects , Virus Replication/drug effects , Antiviral Agents/pharmacology , COVID-19/metabolism , Computer Simulation , Coronavirus Papain-Like Proteases/drug effects , Drug Evaluation, Preclinical/methods , Humans , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Papain/metabolism , Peptide Hydrolases/metabolism , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Protease Inhibitors/pharmacology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
3.
Molecules ; 26(9)2021 May 10.
Article in English | MEDLINE | ID: covidwho-1224075

ABSTRACT

The Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the "COVID-19" disease that has been declared by WHO as a global emergency. The pandemic, which emerged in China and widespread all over the world, has no specific treatment till now. The reported antiviral activities of isoflavonoids encouraged us to find out its in silico anti-SARS-CoV-2 activity. In this work, molecular docking studies were carried out to investigate the interaction of fifty-nine isoflavonoids against hACE2 and viral Mpro. Several other in silico studies including physicochemical properties, ADMET and toxicity have been preceded. The results revealed that the examined isoflavonoids bound perfectly the hACE-2 with free binding energies ranging from -24.02 to -39.33 kcal mol-1, compared to the co-crystallized ligand (-21.39 kcal mol-1). Furthermore, such compounds bound the Mpro with unique binding modes showing free binding energies ranging from -32.19 to -50.79 kcal mol-1, comparing to the co-crystallized ligand (binding energy = -62.84 kcal mol-1). Compounds 33 and 56 showed the most acceptable affinities against hACE2. Compounds 30 and 53 showed the best docking results against Mpro. In silico ADMET studies suggest that most compounds possess drug-likeness properties.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19 Drug Treatment , Coronavirus 3C Proteases/chemistry , Drug Delivery Systems , Isoflavones/chemistry , Molecular Docking Simulation , Angiotensin-Converting Enzyme 2/metabolism , Coronavirus 3C Proteases/metabolism , Humans , Isoflavones/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL